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The generalization properties of an attractive network of nonmonotonic neurons that infers concepts from
samples are studied. The macroscopic dynamics for the overlap between the neuron states and concepts, as
well as the activity of the neurons, is obtained and numerically studied. Complex behavior leading from fixed
points to chaos through a cascade of bifurcation is found when we increase the correlation between samples,
decrease the activity of the samples and the load of concepts, or tune the threshold of fatigue of the neurons.
Both the information dimension and the Liapunov exponent are given and a phase diagram is built.
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I. INTRODUCTION

There are two sources for building more sophisticated
models of brain behavior as associative memory other than
the original Hopfield model for neural networks. One is the
closeness to realistic facts observed in neural systems and the
other is the trial to attain more complex learning abilities.
Among the successful attempts for the former are the multi-
state neuron models@1#, which include three-state, analog,
and nonmonotonic neurons. The capability of generalization,
the inference of rules from examples, is an example of the
latter @2,3#. The categorization or capability to retrieve pat-
terns of activity in different levels of a hierarchical classifi-
cation is another instance@4#. Here we work out a connection
between the multistate neural networks and the categoriza-
tion networks, which leads to a different kind of generaliza-
tion, as a property of such neural devices to infer a full
concept from small samples of that concept. While in most
neural models of learning~see Ref. @5# and references
therein! the generalization function measures the ability of
the network to give correct answers to each question, after
being trained with samples of question-answer pairs, in the
present model the samples are patterns that carry information
about the concepts, which can be identified with the answers.

The multistate neuron model was introduced to account
for some degrees of ignorance of pieces of the full pattern. It
differs qualitatively from the two-state model because, in the
absence of part of the information, fewer bits are required to
represent the so-calledsmall pattern, as one picked up infor-
mation from the active sites, keeping the inactive sites off.
Several models of multistate neurons were studied with the
Hebbian learning algorithm. The behavior of the analog neu-
ral network was studied first in the case of binary memorized
patterns@6# and yields a phase diagram similar to that of
stochastic binary neurons, replacing the temperatureT for
the inverse of the gain parameter~the slope at the origin of
the transfer function!. The three-state neural network in the
presence of three-state uncorrelated patterns was studied
within the extremely diluted synapse scheme, showing an
enhancement of the storage capacity with an adequate con-

trol of its firing threshold. This is more notable when the
patternactivity ~the rate of nonvanishing states per sites of
the pattern! is small @7#. Nonmonotonic neural networks,
which take into account the fatigue of each neuron after be-
ing exposed to a large post-synaptic potential, was studied by
means of a signal-noise analysis@8#. This network exhibits
an interesting superretrieval phase, with vanishing error even
for a large number of learned patterns. If the neurons are able
to change their states to the opposite of the signal of its local
field, the capacity of the network becomes even larger than
that of three-state neurons@9#.

For all these cases a parallel deterministic dynamics was
assumed, given by the set of equations

s i t115Fu~hit !, i51, . . . ,N, ~1!

wheres i t is the neuron state of sitei at time t, u is the
threshold parameter that represents deviation of the signal
function, and, as usual, only odd bounded input-output~IO!
Fu functions are considered. The local field of sitei at time
t is

hit5 (
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N
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Ji j being the elements of the synaptic matrix. In the case of
three-state neurons and patterns, the existence of a threshold
for which the retrieval is optimized was also found by statis-
tical mechanical techniques within the replica symmetric ap-
proximation@10#, but it is not useful for the nonmonotonic
network since it does not have an energy function@11#.

The task of generalization by a neural network can be
realized in a manifold of contexts. One kind is the categori-
zation, which takes place if we use an alternative Hebbian
learning algorithm that storess examples having correlation
b with one hierarchical ancestor for each of thep concepts.
For the connected model, in the context of an attractor neural
network, the following modified Hebbian learning algorithm
has been studied@4#:
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The correlation of the learning examplehmr with one con-
cept of the set$jm% is ^h i

mrj j
n&5bdmnd i j . The phase transi-

tion from a disordered to a generalization phase, where the
neurons retrieve one concept, was found to be discontinuous
with b for a fully connected network@12# and smooth for a
diluted network@13#. After sufficiently increasings or b and
decreasinga[p/N, the error in the generalization became
small enough to consider such a task successful.

Another interesting kind of generalization is inference.
The coherence between the learned patterns with activity
a!1 allows many patterns to be simultaneously retrieved
@14#. Then, by learning small patterns, we can infer the ex-
istence of a whole pattern, with activitya;1. Enlarging the
effective size of the pattern, we can extract much more in-
formation than the original patterns contain. For instance, we
would see wood where before we had seen only trees. To
obtain such an inferential property, however, a more sophis-
ticated algorithm is required. Fortunately, it comes from a
modified version of the Hebbian algorithm in Eq.~3!. Nev-
ertheless, it requires a mathematically difficult effort to make
a connection between generalization and multistate neurons.
A unique investigation treating the generalization with ana-
log neurons@15# uses binary examples. Then it is worth ana-
lyzing such models in their simpler, extremely diluted ver-
sion, which yields an exactly soluble dynamics and is
biologically relevant at the same time@16#. In this version, a
network of three-state monotonic neurons shows a clear im-
provement of the performance as a generalization device if
small activity examples are learned@17#.

We describe the model of a network of nonmonotonic
neurons in the next section. After obtaining the recursion
relations for the inferential properties in Sec. III, we present
our conclusions in Sec. IV, drawing the curves of generali-
zation with special attention to the nonsteady solutions.

II. MODEL

We adopt the dynamics given in Eqs.~1! and~2! and start
by defining an IO function. Although most works employ
stairlike ~modeling by theq Ising network! or other mono-
tonic functionsFu , we will avoid this restriction and choose
instead

Fu~x![H sgn~x!, uxu,u

0, uxu>u.
~4!

Thus the IO function tells us the way in which the network
updates each neuron, which becomes fatigued outside the
interval uhit u,u, according to Eq.~1!.

For the synaptic interactions we will assume the Hebbian
algorithm in Eq.~3!, but the examples to be learned will be
three-state variables, like the neuron state itself. In order to
preserve the odd symmetry of the neurons, those patterns are
uniformly distributed around the zero state. Thus the ex-
amplesh i

mr are independent random variables built from the
conceptsj i

m through the stochastic process

h i
mr5j i

ml i
mr , ^l i

mr&[b, ^~l i
mr!2&[a, ~5!

wherej i
m561 with equal probability. The random variables

introduced herel i
mr are characterized by their meanb and

their square meana for all exampleshmr.
Then the parametera is theactivityof the examples them-

selves, whileb is thecorrelationbetween examples and their
respective concepts. On the one hand, we can recover the
pure generalization model@4# by settingl i

mr561 (a51)
with a biasb for the positive value and thresholdu→`. In
this simple limit the neurons are thought of as being submit-
ted to background noise, perhaps due to some dirtiness on
the pattern. On the other hand, the pure multistate model can
also be obtained by taking the number of exampless51 in
Eq. ~3! and correlationb51. A low activity a!1 indicates
that at many sites the patterns are not activeuh i

mruÞ1, with
the effective size of the learned patterns beingNe5aN. So,
when the activitya is not close to 1, we can speak of asmall
pattern @1#. In our model the alternative viewpoint is the
following: the small examples aresamplesof the full activity
concepts to be inferred.

The task of generalization~inference! is successful if the
distance between the state of the neuron and the concept
jm, defined asEt

m[(1/N)( i uj i
m2s i t u, becomes small after

some timet. This is the so-called Hamming distance, which
in this context is called thegeneralizationerror. In order to
measure the quality of the retrieval of the small patterns@7#
one needs to consider a Euclidean quadratic distance instead
of the Hamming distance, but we are interested exclusively
in the capacity of the network to infer a larger concept of full
activity from the samples, in which caseEt

m suffices.
Here we should remark that sinceEm is m dependent it

looks like a training error with respect to one pattern@5#.
However, it is not dependent on the exampleshmr, being
indeed a generalization error, which isp degenerate for all
concepts, and a particular states near toj 1 can be chosen.

The relevant order parameters for the dynamics during
some specified timet when the state of network is given by
$s i t% are theretrieval overlaps

mNt
mr[

1

aN(
j

N

h j
mrs j t ~6!

of theath example of themth concept. They are normalized
parameters within the interval@21,1#, which attain the ex-
treme valuemN

mr51 wheneverh j
mr5s j , by virtue of Eq.

~5!. Using this definition, with the synaptic interaction in Eq.
~3!, the local field in Eq.~2! becomes
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Next we need to analyze the evolution of theps coupled
equations~6! instead of theN original equations~1!.

Because we are interested in the generalizing property of
our network, we take an initial configuration whose retrieval
overlaps are only macroscopic ofO(1) for thes examples of
a given concept, let us say the first one, and symmetric
~equal for allr). We writemNt51

1s 5(r
smNt51

1r for the sym-
metric overlap. In the thermodynamic limit, the retrieval
overlapsmNt51

1r in Eq. ~6! are infinite sums of independent
random variables~IRVs!, whose fluctuations around its mean
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value ^^mNt51
1r && can be neglected. Then the law of large

numbers~LLNs! applies to get

mt51[ lim
N→`

mNt51
1s 5^^xsFu~L t50!&xs&v0

, ~8!

which is i -site independent. Here we have defined the vari-
able of the fieldL t50[j1ht505mt50sa

2xs1v0 , where
mt50 is the initial symmetric retrieval overlap,
xs[(1/as)(r

sl1r, and v0 is the noise produced by the
p21 residual concepts in Eq.~6!. The averages in the angu-
lar brackets are over bothxs andv0 terms in the field. We
have used the odd property ofFu and have written the argu-
ment inFu here as a sum of two different kinds of terms. The
first one favors the ordering in the direction of the first con-
cept, while the secondv0 introduces an additional noise to
the original mistakes represented for those sites where
l i
1r521.
The most interesting feature for us is the generalizing

property of our network. It is characterized by the overlap of
the neural state with the first concept, given in the first time
step by

Mt51[ lim
N→`

1

N(
i

j i
1s i t515^^Fu~L t50!&xs&v0

, ~9!

which is related to the generalization error~the Hamming
distance! by Et51

1 512Mt51. For multistate neurons it is
useful to define thedynamical activityorder parameter, given
in the first time step by

Qt51[ lim
N→`

1

N(
i

~s i t51!
25^^@Fu~L t50!#

2&xs&v0
. ~10!

This accounts for the active neurons and plays a role similar
to the spin-glassparameter of the thermodynamic equilib-
rium approach for binary neurons since it allows one to mea-
sure the degree of order even when there is no retrieval at all
@18,19#. In Eqs.~9! and ~10! we have used the LLNs for a
sum of IRVs, with vanishingly fluctuations, in the thermody-
namic limit.

III. DILUTED DYNAMICS

Although it is easy to solve the single time Eq.~8! and to
obtain the generalization errorEt , the recursion relations for
any timet are not easily solved. We then use the extremely
diluted synapse approximation, for which the first time step
gives exact results for any number of time steps. In this
limiting situation the synaptic interactions take a vanishing
value for almost all pairs of neurons$ i j % and are of the form
given in Eq.~3! only for a small fractionC/N!1 of them.
Equations~8!–~10! are then reproducible for anyt, with the
following simple distribution (8) of the noise caused by the
examples of thep21 residual concepts:v t8zpAaQtr ,
where a5p/C, r5s@a21(s21)b4#, and zp8N(0,1) is a
Gaussian random variable with mean^zp&50 and unit vari-
ance.Qt is thedynamicalactiv i ty at time t.

We will also use an approximation for the case of many
examples (s.10): xs8 b/a1zsA(a2b2)/(sa2) with
zs8N(0,1) independent ofzp . With these remarks, after

some algebra with both Gaussianzs andzp we can write the
arbitrary time-step dynamics for the macroscopic parameters,
with the IO function given by Eq.~4!.

The dynamical activity is

Qt115
1

2
@erf~A1!2erf~A2!#, A6[

mtsab6u

Av t
,

~11!

with v t[sa2(a2b2)(mt)
21arQt , and the symmetric re-

trieval overlap is

mt115
b

a
Mt111mt~a2b2!Ct11 , ~12!

where we have defined erf(x)[*0
xdyw(y),

w(y)[exp(2y2/2)/A2p. Here

Mt115erfS sabmtAv t
D 2

1

2
@erf~A1!1erf~A2!# ~13!

is the overlap of generalization and

Ct11[^Fu8~L t!&z5
1

Av t
F2wS sabmtAv t

D 2w~A1!2w~A2!G .
~14!

We will make no restrictions about the values the parameters
b and a can assume within the (0,1) interval, except that
they must satisfya>b2 ~the equality corresponding to con-
stant microscopic activitiesl[b).

IV. ATTRACTORS AND CONCLUSIONS

Two fixed-point ordered phases can appear: namely, the
generalizationphase$G:M.0,Q.0% and theself-sustained
activity $S:M50,Q.0% ~or microscopic chaotic@20#! phase.
However, the most interesting attractors are the nonsteady
macroscopic phases. Although Eqs.~11!–~14! are determin-
istic, averaged over the stochasticity induced by the exten-
sive loadp5aC, some complex behavior remains present in
the large-time dynamics. Adoublingof period generalization
phase $D:Mt.0,Qt.0% appears, without a fixed point,
where cyclic or chaotic attractors arise. It can be viewed in
the curves of generalization showed in the figures below.

In Fig. 1 ~bottom! we see the generalization errorEt de-
pendence on the sample correlationb and activity a, in
which we tooka5b. Fixed values of the number of ex-
amples, load rate, and threshold of fatigue are used. When
b is increased untilb1;0.19, the generalization error has a
fixed-point behavior. It initially falls until an optimal value
Et;0.07 at bop;0.15. Then it reaches a first bifurcation,
beyond which it oscillates between two values, exhibiting a
periodic behavior. A cycle-four is found after a second bifur-
cation atb2;0.31, and this doubling of period follows until
a quasiperiodic behavior takes place atb`;0.35. For
b`,b,bS , regions of chaos intercalate with windows of
periodicity. AfterbS;0.6, although the correlation is large,
the activity is large too and destroys the capacity of gener-
alization, so thatEt51. The same behavior was qualitatively
found as a function of activitya (b), keeping fixedb (a).
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For sufficiently low~high! activity ~correlation!, Et oscillates
aperiodically, eventually closer to each chosen initial value
but never equal to it.

In order to measure the degree of the nonregular behavior
we calculated the Liapunov exponent in the region ofa5b
above. It was estimated as@21# lL;(1/T)ln@dmT /dm0# for
T@1, wheredmt is the distance between two trajectories
initially near each other. It gives positive values within the
interval b`,b,bS , attaining the value lL;0.34 at
bC;0.41, as we can see in Fig. 1~top!. This indicates how
chaotic the oscillation ofEt in this attractor is, which shows
sensitivity to initial conditions. We also calculated the infor-
mation dimension of the attractor, estimated by@21#
dH; ln(Nr)/uln(r)u, r!1, whereNr is the number of balls
with radiusr necessary to cover all pointsEt . For the point
bC we gotdH50.81. The noninteger value ofdH shows that
such an attractor is a fractal.

The behavior as a function ofu is shown in Fig. 2~bot-
tom!, where the effect of the fatigue is singled out. When the
threshold is small enough the generalization is poor because
the local fields almost everywhere exceedu, which lead the
neurons to their fatigue phase. Afteru12;1.3 the probability
of the local field being lower thanu becomes relevant and
then a periodic regime start. A chaotic regime happens for
3.8,u,6, when the local fields fluctuate aroundu. An
atypical exit from the chaotic regime occurs whenu is so
large that the local fields gradually leave the nonsigmoidal
phase until atu11;15 a new fixed point regime sets in, but
now with a good generalization.

A bifurcation diagram was also found as a function of the
load rate of conceptsa. The noise induced by the saturation
of concepts caused a large fluctuation for the local fields.
Thus the chaotic behavior, which implies a very sensitive
flow of the neural states with their previous states, is lost for
largea. A phase diagram of the model is shown in the Fig.
2 ~center! for fixed values ofa,b,s. For small values ofa, a
transition from aS phase to aD phase occurs whenever the
threshold of fatigue crosses the solid curve. For larger values
of a, the solid curve separates theS phase from theG phase.

TheG phase is separated from theD phase by the dashed
curve. Different from the phase diagram obtained in@23#,
here no phase$Z:M50,Q50% can be reached, as can be
seen from Eq. ~11!, with mt50, which reads
Qt115erf(u/AarQt). For Qt→0 we getQt11→1. TheS
phase competes in one region with theG phase, but the latter
is more stable overall in this region.

In order to compare with the monotonic case, for which
the IO functionFu(x)[sgn(x),uxu.u([0,uxu<u) can be
taken, we built the phase diagrama(u) of the Fig. 2~top!.
The parameteru here represents a threshold of fire for the
neurons. There is noD phase for this case, but instead aZ
phase can appear for large enough values ofu.

It is not too surprising that the motion of the neuron states
themselves can be over a chaotic trajectory, where the
memory of the initial configuration is not preserved. But in
this case the macroscopic parameter measuring the retrieval
of one pattern is almost alwaysMt50 because the motion is
ergodic over the trajectory, running equally over all possible
states, the huge majority of which have vanishingly over-
lapped with that pattern. This is the case of theS phase. In
the present model, however, the chaos appears on the less
complex macroscopic trajectories for the overlap in such a
manner that almost alwaysMt.0. Then we can conjecture
that in the nonsteady regimes, the network preserves a
memory of what concept was used as a seed in the initial
configuration. Thus it cannot be related to the properties of
sequential generalization@22#, for which a set of concepts
can be retrieved consecutively. Because the vector of over-
lapsMW t can be roughly orthogonal to its previous state, many
other directionsMt

m become macroscopic each time. Only
one concept, however, is persistently retrieved, at varying
magnitude.

A similar result was recently found for the pure multistate
model for the retrieval of patterns, but using continuous non-

FIG. 1. Bottom: generalization errorEt as a function of the
pattern correlation and activitya5b, the number of examples
s520, load ratea50.01, and threshold of fatigueu51. Top: Li-
apunov exponent for the attractor of the bottom figure.

FIG. 2. Bottom: generalization errorEt as a function ofu with
b50.55a, s550, anda50.05. Center: phase diagrama(u), with
b50.55a ands550. The dashed curve separates theD phase from
theG phase, while the solid curve separates theS phase from the
G or theD phase. Top: phase diagrama(u), with the same param-
eters as the center figure, but with monotonic three-state neurons.
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monotonic neurons instead of our discrete neurons@23#. This
shows that the present complex behavior is a consequence of
the nonmonotonicity rather than a characteristic of the gen-
eralization model.

The diagrams in Figs. 1 and 2 demonstrate how a network
of nonmonotonic neurons can exhibit a complex behavior.
The coherent retrieval of samples leads to the ability to infer
a large activity concept, even for a large load ratio. The
periodicity of the generalization can be controlled by the

activity of the samples, their correlation with each other, and
the gain parameter of the neurons. We hope it is worth veri-
fying such a behavior of the inferential properties with other
learning algorithms and higher levels of hierarchy.
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