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Inference and chaos by a network of nonmonotonic neurons

David R. C. Domingue*z
Theoretical Physics Department C-XI, Universidad Autoacde Madrid, Cantoblanco, 28049 Madrid, Spain
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The generalization properties of an attractive network of nonmonotonic neurons that infers concepts from
samples are studied. The macroscopic dynamics for the overlap between the neuron states and concepts, as
well as the activity of the neurons, is obtained and numerically studied. Complex behavior leading from fixed
points to chaos through a cascade of bifurcation is found when we increase the correlation between samples,
decrease the activity of the samples and the load of concepts, or tune the threshold of fatigue of the neurons.
Both the information dimension and the Liapunov exponent are given and a phase diagram is built.
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[. INTRODUCTION trol of its firing threshold. This is more notable when the
patternactivity (the rate of nonvanishing states per sites of
There are two sources for building more sophisticatedhe patterh is small [7]. Nonmonotonic neural networks,
models of brain behavior as associative memory other thawhich take into account the fatigue of each neuron after be-
the original Hopfield model for neural networks. One is theing exposed to a large post-synaptic potential, was studied by
closeness to realistic facts observed in neural systems and thgeans of a signal-noise analy$B]. This network exhibits
other is the trial to attain more complex learning abilities.an interesting superretrieval phase, with vanishing error even
Among the successful attempts for the former are the multifor a large number of learned patterns. If the neurons are able
state neuron modelgl], which include three-state, analog, to change their states to the opposite of the signal of its local
and nonmonotonic neurons. The capability of generalizationfield, the capacity of the network becomes even larger than
the inference of rules from examples, is an example of théhat of three-state neurof8].
latter [2,3]. The categorization or capability to retrieve pat-  For all these cases a parallel deterministic dynamics was
terns of activity in different levels of a hierarchical classifi- assumed, given by the set of equations
cation is another instan¢d]. Here we work out a connection
between the multistate neural networks and the categoriza- oit+1=Fe(hi), 1=1,... N, 1)
tion networks, which leads to a different kind of generaliza-
tion, as a property of such neural devices to infer a fullwhere oy is the neuron state of siteat timet, 6 is the
concept from small samples of that concept. While in mosthreshold parameter that represents deviation of the signal
neural models of learningsee Ref.[5] and references function, and, as usual, only odd bounded input-outpDy
therein the generalization function measures the ability ofF, functions are considered. The local field of ditat time
the network to give correct answers to each question, afteris
being trained with samples of question-answer pairs, in the

present model the samples are patterns that carry information N
about the concepts, which can be identified with the answers. hi= 2 Jijojt, (2
The multistate neuron model was introduced to account D

for some degrees of ignorance of pieces of the full pattern. IH
differs qualitatively from the two-state model because, in the[
absence of part of the information, fewer bits are required tq
represent the so-callesinall pattern as one picked up infor-
mation from the active sites, keeping the inactive sites off
Several models of multistate neurons were studied with th
Hebbian learning algorithm. The behavior of the analog neu-
ral network was studied first in the case of binary memorizeqe
patterns[6] and yields a phase diagram similar to that of
stochastic binary neurons, replacing the temperalurer

ij being the elements of the synaptic matrix. In the case of
hree-state neurons and patterns, the existence of a threshold
or which the retrieval is optimized was also found by statis-
tical mechanical techniques within the replica symmetric ap-
roximation[10], but it is not useful for the nonmonotonic
etwork since it does not have an energy funcfibh.

The task of generalization by a neural network can be
alized in a manifold of contexts. One kind is the categori-
zation, which takes place if we use an alternative Hebbian

the | £ th : éhe sl t the oridin of learning algorithm that storesexamples having correlation
€ Inverse of tné gain parameténe slope at the ongin ot , iy 5ne hierarchical ancestor for each of theoncepts.

the transfer function The three-state neural network in the For the connected model, in the context of an attractor neural

presence of three-stat_e uncorrelated patterns was .StUd'?l twork, the following modified Hebbian learning algorithm
within the extremely diluted synapse scheme, showing al4s been studied]:

enhancement of the storage capacity with an adequate con-
182
Jij:NE > . 3
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The correlation of the learning exampig® with one con-  whereé&l= =1 with equal probability. The random variables
cept of the se{é&”} is (n{§)=bd,, ;. The phase transi- introduced here\{"” are characterized by their meanand
tion from a disordered to a generalization phase, where thgheir square meaa for all examplesy**.
neurons retrieve one concept, was found to be discontinuous Then the parameteris theactivity of the examples them-
with b for a fully connected networkl2] and smooth for a  selves, while is thecorrelationbetween examples and their
diluted network 13]. After sufficiently increasing orb and  respective concepts. On the one hand, we can recover the
decreasingr=p/N, the error in the generalization became pure generalization mod¢#] by setting\“’=+1 (a=1)
small enough to consider such a task successful. with a biasb for the positive value and threshotti—. In
Another interesting kind of generalization is inference.this simple limit the neurons are thought of as being submit-
The coherence between the learned patterns with activitied to background noise, perhaps due to some dirtiness on
a<l allows many patterns to be simultaneously retrievedhe pattern. On the other hand, the pure multistate model can
[14]. Then, by learning small patterns, we can infer the ex-also be obtained by taking the number of examies. in
istence of a whole pattern, with activigy~1. Enlarging the  Eq. (3) and correlatiorb=1. A low activity a<1 indicates
effective size of the pattern, we can extract much more inthat at many sites the patterns are not ackiyé’| # 1, with
formation than the original patterns contain. For instance, Wgne effective size of the learned patterns belg- aN. So,
would see wood where before we had seen only trees. T@hen the activitya is not close to 1, we can speak ofmall
obtain such an inferential property, however, a more sophispattern [1]. In our model the alternative viewpoint is the

ticated algorithm is required. Fortunately, it comes from 8following: the small examples asamplesf the full activity
modified version of the Hebbian algorithm in E@). Nev- concepts to be inferred.

ertheless, it requires a mathematically difficult effort to make  The task of generalizatiofinference is successful if the
a connection between generalization and multistate neurongistance between the state of the neuron and the concept
A unigue investigation treating the generalization with ana-u  defined asEl=(1/N)3,;|&*— 0|, becomes small after

log neurong 15] uses binary examples. Then it is worth ana-gq 16 timet . This is the so-called Hamming distance, which

lyzing such models in their simpler, extremely diluted VeT”in this context is called thgeneralizatiorerror. In order to

slon, .Wh'Ch yields an exactly ;oluble dyr_lam|cs_ and ispeasure the quality of the retrieval of the small pattgifis
biologically relevant at the same tini6]. In this version, a ._one needs to consider a Euclidean quadratic distance instead
network of three-state monotonic neurons Sh_OWTQ’ a clea_r M5t the Hamming distance, but we are interested exclusively
provement of the performance as a generalization device th the capacity of the network to infer a larger concept of full

small actlvny_ examples are leamgi7]. ._activity from the samples, in which cag# suffices.
We describe the model of a network of nonmonotonic . . .
Here we should remark that sin&" is x dependent it

neurons in the next section. After obtaining the recursior‘|Ooks like a training error with respect to one pattés)

relations for the inferential properties in Sec. Ill, we presen o :
our conclusions in Sec. IV, drawing the curves of generalif.However’ it is not dependent on the exampig¥’, being

zation with special attention to the nonsteady solutions. indeed a generahzat!on error, which psdiagenerate for all
concepts, and a particular statenear to¢ * can be chosen.

The relevant order parameters for the dynamics during
Il. MODEL some specified timé when the state of network is given by

{0y} are theretrieval overlaps
We adopt the dynamics given in Eq4) and(2) and start

by defining an 10 function. Although most works employ 1 XN
stairlike (modeling by theq Ising network or other mono- mye= mz 7 o (6)
tonic functionsF 4, we will avoid this restriction and choose .
instead of the ath example of theuth concept. They are normalized
parameters within the intervalk1,1], which attain the ex-
sgn(x), |x|<@ treme valuem{”=1 whenevery|”=o;, by virtue of Eq.
Fy(x)= - (4) (5. Using this definition, with the synaptic interaction in Eq.
0, |x|[=6. (3), the local field in Eq(2) becomes
P S
Thus the 10 function tells us the way in which the network h.=a 1P P 7
updates each neuron, which becomes fatigued outside the . % ; TN 0

interval |h;;|< 6, according to Eq(1).

For the synaptic interactions we will assume the HebbiarNext we need to analyze the evolution of the coupled
algorithm in Eq.(3), but the examples to be learned will be equations(6) instead of theN original equationg1).
three-state variables, like the neuron state itself. In order to Because we are interested in the generalizing property of
preserve the odd symmetry of the neurons, those patterns a@&r network, we take an initial configuration whose retrieval
uniformly distributed around the zero state. Thus the exoverlaps are only macroscopic ©f 1) for thes examples of
amplesz** are independent random variables built from the@ given concept, let us say the first one, and symmetric
conceptst/ through the stochastic process (equal for allp). We write my;_;==5my_, for the sym-

metric overlap. In the thermodynamic limit, the retrieval
overlapsmy,_, in Eq. (6) are infinite sums of independent
pP=ENP . (NPY=Dh, ((\M*)?)=a, (5)  random variable§RVs), whose fluctuations around its mean
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value ((m{i_;)) can be neglected. Then the law of large some algebra with both Gaussianandz, we can write the

numbers(LLNs) applies to get arbitrary time-step dynamics for the macroscopic parameters,
with the 10 function given by Eq(4).
My=1= M Mig_; = ((XF o(A1=0))x) wgs ® The dynamical activity is
N—oo
"
which isi-site independent. Here we have defined the vari- Qlel[erf(Ag—erf(A,)], A= W,
able of the fieldA_o=¢&%h,_o=m_osa’Xs+ wy, where 2 oy
mi_o is the initial symmetric retrieval overlap, (13)

xSE(llas)Ef;)\lP, and wg is the noise produced by the with v,=sa(a—b?)(m)2+arQ,, and the symmetric re-
p—1 residual concepts in E¢6). The averages in the angu- tiayal toverlap is ! v

lar brackets are over botk, and wy terms in the field. We

have used the odd property Bf and have written the argu- 5

ment inF , here as a sum of two different kinds of terms. The Met1= 7 Mer s+ m(@a—b9)Ceyy, (12
first one favors the ordering in the direction of the first con-

cept, while the second introduces an additional noise to where we have defined exl(=[3dye(y),
the original mistakes represented for those sites wherg(y)=exp(-y?/2)/\27. Here

NP=—1.
The most interesting feature for us is the generalizing sabm) 1
property of our network. It is characterized by the overlap of M1 =erf . —slerf(A ) +erf(A)] (13
the neural state with the first concept, given in the first time Ut
step by is the overlap of generalization and
1
M_i=lim =2, &0y 1=((F (A e (9 ) 1 sabm
t=1 N NZI §| Tit=1 << 0( t O)>Xs> 0 ( ) C’[+1E<F0(At)>zz_ 2(P<— _(P(A+)_(P(A7) )
oy oy
(14)

which is related to the generalization errghe Hamming

distancg by Ef_;=1—M_;. For multistate neurons it is e will make no restrictions about the values the parameters
gseful to define theynamical activityorder parameter, given | anda can assume within the (0,1) interval, except that
in the first time step by they must satisfa=b? (the equality corresponding to con-
stant microscopic activities=b).

o1
Q1= lim G2 (0i-0)*=([FoA0)P)x)o,  (10)
N—co ! IV. ATTRACTORS AND CONCLUSIONS

This accounts for the active neurons and plays a role similar Two fixed-point ordered phases can appear: namely, the
to the spin-glassparameter of the thermodynamic equilib- generalizationphase{G:M>0,Q>0} and theself-sustained
rium approach for binary neurons since it allows one to meaactivity {S:M=0,Q>0} (or microscopic chaotif20]) phase.
sure the degree of order even when there is no retrieval at afowever, the most interesting attractors are the nonsteady
[18,19. In Egs.(9) and(10) we have used the LLNs for a macroscopic phases. Although Eg$1)—(14) are determin-
sum of IRVs, with vanishingly fluctuations, in the thermody- istic, averaged over the stochasticity induced by the exten-
namic limit. sive loadp= aC, some complex behavior remains present in
the large-time dynamics. Aoublingof period generalization
IIl. DILUTED DYNAMICS phase {D:M>0,Q,>0} appears, without a fixed point,
where cyclic or chaotic attractors arise. It can be viewed in
Although it is easy to solve the single time Ef) and to  the curves of generalization showed in the figures below.
obtain the generalization erré&;, the recursion relations for In Fig. 1 (bottom) we see the generalization errigy de-
any timet are not easily solved. We then use the extremelypendence on the sample correlatibnand activity a, in
diluted synapse approximation, for which the first time stepwhich we tooka=Db. Fixed values of the number of ex-
gives exact results for any number of time steps. In thisamples, load rate, and threshold of fatigue are used. When
limiting situation the synaptic interactions take a vanishingb is increased untib;~0.19, the generalization error has a
value for almost all pairs of neurodg } and are of the form  fixed-point behavior. It initially falls until an optimal value
given in Eq.(3) only for a small fractionC/N<1 of them.  E;~0.07 atb,,~0.15. Then it reaches a first bifurcation,
Equations(8)—(10) are then reproducible for arty with the  beyond which it oscillates between two values, exhibiting a
following simple distribution ¢&) of the noise caused by the periodic behavior. A cycle-four is found after a second bifur-
examples of thep—1 residual conceptsw;=z,\aQir, cation atb,~0.31, and this doubling of period follows until
where a=p/C, r=s[a?+(s—1)b*], and z,=N(0,1) is a a quasiperiodic behavior takes place lt~0.35. For
Gaussian random variable with me@ry)=0 and unit vari-  b,.<b<bg, regions of chaos intercalate with windows of
ance.Q; is thedynamicalactivity at timet. periodicity. Afterbg~0.6, although the correlation is large,
We will also use an approximation for the case of manythe activity is large too and destroys the capacity of gener-
examples $>10): x.=bla+z/(a—b?)/(sa?) with alization, so thaE,= 1. The same behavior was qualitatively
z,=N(0,1) independent ok,. With these remarks, after found as a function of activity (b), keeping fixedb (a).
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o . 0.0 5.0 10.0 150
FIG. 1. Bottom: generalization errdg; as a function of the 0

pattern correlation and activita=b, the number of examples

$=20, load ratea=0.01, and threshold of fatigué=1. Top: Li- FIG. 2. Bottom: generalization errdt, as a function ofg with
apunov exponent for the attractor of the bottom figure. b=0.5=a, s=50, anda=0.05. Center: phase diagraa{6), with
b=0.5=a ands=50. The dashed curve separatesiBhphase from

For sufficiently low(high) activity (correlation, E; oscillates  the G phase, while the solid curve separates $hehase from the
aperiodically, eventually closer to each chosen initial valueG or theD phase. Top: phase diagra®(6), with the same param-
but never equal to it. eters as the center figure, but with monotonic three-state neurons.

In order to measure the degree of the nonregular behavior
we calculated the Liapunov exponent in the regiormefb ~ The G phase is separated from tie phase by the dashed
above. It was estimated 481] A, ~(1/T)In[dm;/dm,] for ~ Curve. Different from the phase diagram obtained 23],
T>1, wheredm, is the distance between two trajectories here no phas¢Z:M=0,Q=0} can be reached, as can be
initially near each other. It gives positive values within theseen from Eg. (11), with m=0, which reads
interval b.<b<bg, attaining the valuex ~0.34 at Qur1=erf(6/VarQy). For Qt—0 we getQ;.;—1. TheS
bc~0.41, as we can see in Fig.(fop). This indicates how Phase competes in one region with thghase, but the latter
chaotic the oscillation oE, in this attractor is, which shows is more stable overall in this region.
sensitivity to initial conditions. We also calculated the infor-  In order to compare with the monotonic case, for which
mation dimension of the attractor, estimated Bg1] the 10 functionF (x)=sgn(),|x|>6(=0|x|<6) can be
dy~In(N,)/|In(r)|, r<1, whereN, is the number of balls taken, we built the phase diagram{¢) of the Fig. 2(top).
with radiusr necessary to cover all poin . For the point The parametep here represents a threshold of fire for the
bc we gotd,=0.81. The noninteger value df, shows that neurons. There is nD phase for this case, but insteadZa
such an attractor is a fractal. phase can appear for large enough value8.of

The behavior as a function df is shown in Fig. 2(bot- It is not too surprising that the motion of the neuron states
tom), where the effect of the fatigue is singled out. When thethemselves can be over a chaotic trajectory, where the
threshold is small enough the generalization is poor becaugg@emory of the initial configuration is not preserved. But in
the local fields almost everywhere excedwhich lead the this case the macroscopic parameter measuring the retrieval
neurons to their fatigue phase. Aftey_~ 1.3 the probability ~ Of one pattern is almost alwayé,;=0 because the motion is
of the local field being lower tha@ becomes relevant and ergodic over the trajectory, running equally over all possible
then a periodic regime start. A chaotic regime happens fotates, the huge majority of which have vanishingly over-
3.8<9<6, when the local fields fluctuate arouréd An lapped with that pattern. This is the case of ighase. In
atypical exit from the chaotic regime occurs wheris so  the present model, however, the chaos appears on the less
large that the local fields gradually leave the nonsigmoidafOmplex macroscopic trajectories for the overlap in such a
phase until a¥, . ~15 a new fixed point regime sets in, but manner that almost alwayd,;>0. Then we can conjecture
now with a good generalization. that in the nonsteady regimes, the network preserves a

A bifurcation diagram was also found as a function of thememory of what concept was used as a seed in the initial
load rate of concepta. The noise induced by the saturation configuration. Thus it cannot be related to the properties of
of concepts caused a large fluctuation for the local fieldsSequential generalizatiof22], for which a set of concepts
Thus the chaotic behavior, which implies a very sensitivecan tle retrieved consecutively. Because the vector of over-
flow of the neural states with their previous states, is lost folapsM, can be roughly orthogonal to its previous state, many
large a. A phase diagram of the model is shown in the Fig.other directionsM{ become macroscopic each time. Only
2 (centey for fixed values ofa,b,s. For small values ofr, a  one concept, however, is persistently retrieved, at varying
transition from aS phase to @ phase occurs whenever the magnitude.
threshold of fatigue crosses the solid curve. For larger values A similar result was recently found for the pure multistate
of a, the solid curve separates tBghase from th& phase. model for the retrieval of patterns, but using continuous non-
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monotonic neurons instead of our discrete neuf@3% This  activity of the samples, their correlation with each other, and
shows that the present complex behavior is a consequence thfe gain parameter of the neurons. We hope it is worth veri-
the nonmonotonicity rather than a characteristic of the genfying such a behavior of the inferential properties with other

eralization model. learning algorithms and higher levels of hierarchy.
The diagrams in Figs. 1 and 2 demonstrate how a network

of nonmonotonic neurons can exhibit a complex behavior.
The coherent retrieval of samples leads to the ability to infer
a large activity concept, even for a large load ratio. The
periodicity of the generalization can be controlled by the This work was financially supported by Cnpq, Brazil.
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